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9.1- DEFINING AND DIFFERENTIATING
PARAMETRIC EQUATIONS

Parametric Equation - a type of equation that
uses a third variable known as a parameter
(usually t) to detine the x and y coordinates.

Instead ot detining y in terms of x (such as y = f(x))
or x in terms ot y (such as x = g(y)), parametric
equations are defined in terms of t as

(x, y) = (f(t), g(t)) with x = £(t) and y = g(t).




9.1- DEFINING AND DIFFERENTIATING
PARAMETRIC EQUATIONS

First derivative of a parametric function:

de <2 2'(t)

Think about cancelling out dt

dy £y . do
S R A 0
or gy +




9.1- DEFINING AND DIFFERENTIATING
PARAMETRIC EQUATIONS

A curve in the plane is defined parametrically by the

equations x = 2 cos(3t) and y = —3 sin(2t).

Find W Eil %: -6sin(3h)
gy, A d
E{: ox 'ait: -bcos(2h)
oy

_-6cos (1) _ [ cos(24)
-6sin(3}) SiN(3t)




9.1- DEFINING AND DIFFERENTIATING
PARAMETRIC EQUATIONS

A curve in the plane is defined parametrically by the

equations z = In(4t — 3) and y =

&
t
dy d _,%_/;-:?E’ = j}i: '_l-' L“Jf_;&)
Find the value of@att & '%' %}F Jq;:é _q%_t\_ 3};.@%&)
dxy _ 4 dy .2 43|
ot = 43 dr- § B R T
_aa3]1




9.2 - SECOND DERIVATIVES OF
PARAMETRIC EQUATIONS

REMEMBER TO USE THIS FORMULA

Derivatives Of A Function In Parametric Form




9.2 - SECOND DERIVATIVES OF
PARAMETRIC EQUATIONS

A curve is defined by the parametric equations
r=3"—1andy = 9.

%}:(\“2’)3;2 %ﬁ (n2)q’ O;% (n Q% (n3 )3°" (2nN 3'_ 2(3")
What is =2 in terms of £ ? aj dx - (\n3)3* T (\n3) 3 Un%)

dx?

] d*(a*) _ e aungj% 7]
d*‘ ' () B

(\n?) a*




9.3 - ARC LENGTH W/
PARAMETRIC EQUATIONS




9.3 - ARC LENGTH W/
PARAMETRIC EQUATIONS

R . 0[ -
y=e 0Y . -¢ or—-—
d\' :gs _\%%_*e‘?l’d.l.

Which integral gives the arc length of the curve over
the interval from¢ = —5tot =0?




9.4 - DEFINING AND DIFFERENTIATING
VECTOR-VALUED FUNCTIONS

Vector basics:
e Vectors have magnitude (length) and direction.

Vectors can be represented by directed line segments.
Vectors are equal 1f they have the same direction and magnitude.
Magnitude is designated by ||v||

Vectors have a horizontal and vertical component. |~ Ma gnitu de of a Vector
Component form of a vector is (x, V) .

‘ For any vector: v = (x)
y
y its magnitude is
L wl=vEE
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9.4 - DEFINING AND DIFFERENTIATING
VECTOR-VALUED FUNCTIONS

Finding the derivative of a vector-valued function is pretty

straightforward. Suppose a vector-valued function is defined as
u(t) = (v(t), w(t)), then its derivative is the vector-valued

function u'(t) = (V'(t), w'(t)).

Properties of the derivative for vector-valued functions
d , d
d—t[c-r(t)]—c-r(t) .

- [r@®) - s@®] =" ©)s(©) +r(©)s' ()
d , , d , ,
@ +s@®] =7'@) £5'@®) r [r(s(@®)] =7r"(s®)) - s'(t)




9.4 - DEFINING AND DIFFERENTIATING
VECTOR-VALUED FUNCTIONS

Let g be a vector-valued function defined by

g(t) = (—2sin(t + 1), 5¢° — 2¢).

rind (). 9 7 ( %('23\“(**')); %(5*2'21‘))
= (-2cos(tt), 0+-2)




9.4 - DEFINING AND DIFFERENTIATING
VECTOR-VALUED FUNCTIONS

Let h be a vector valued function defined by

h(t) = ( ik ) = (é, (-23), 4 e*))

Find h's second derivative h"( (UQSL )

h'(¥)-= ( ((Hz)‘) d (363*))
"i('(m)”;qeﬂ) )




9.5 - INTEGRATING VECTOR
VALUED FUNCTIONS

rlntegration of Vector-Valued Functions
Ifr(t) = (f(t), g(t)) then

Jr@)dt = ([ f(t)dt, [ g(t) dt)

Don’t forget +C!




9.5 - INTEGRATING VECTOR
VALUED FUNCTIONS

Gind the vedlor-valed fonction FCF)  that
satisfies the initial qiven Condihions

Fi0)=43,05 7100) = {a,3),
f"(t) =(5cost,—2sint)

| 0 inegrale
ey = YSc‘o‘o*O‘h f-'?Si"*dJ') &%m"“"‘ corditien

= ( Ssint +(, , 208t +(3) (%‘ﬂia tind Cra

since €00)=¢3,0), 5sinl0) (23 2005L0)+(=0

@) Plugbacs xhc":s G2
LT r——

C) = (ssmha,’.lcosk-.'l) ® rcpenf to 3‘# oct)
€ (D= ( [6sinra)d, | (2cost-p0ly)

FOE) = (-Scos v v3Y vCy ) 2sint-2k ()
since  ((0)= (0,3), ~5c0s(0)13(0)-(3=0 2sin(0)2(0)(4>3
C?’:Q Cy=3
EC1) = (-Scost +3} +5, 2sint -2t +3)




9.6 - SOLVING MOTION PROBLEMS USING
PARAMETRIC AND VECTOR-VALUED FUNCTIONS

Position: r(t) = (x(t), y(t))

Velocity: v(t) =r'(t) = (x'(t), y'(t))

Acceleration: a(t) =7r""(t) = (x"(t),y"(t))

Speed: [[v()ll = IOl = (=) + (' (®)°




9.6 - SOLVING MOTION PROBLEMS USING
PARAMETRIC AND VECTOR-VALUED FUNCTIONS

° A dy ’
Dist Tr led: — — | dt
1IStance avele /a ( dt) —+ ( dt)

Speeding up: Acceleration and velocity have the same sign

Slowing down: Acceleration and velocity have ditferent

signs




9.6 - SOLVING MOTION PROBLEMS USING
PARAMETRIC AND VECTOR-VALUED FUNCTIONS

¥t} =2 sin% and y(t) = 2 cos%for time t > 0.
Find the speed of the particle.

Speedl - [lyLhI= lhr’ CAN = (XN H(y (R

X (}) = CQSL% \'(+)= ‘-Sir(%

Yhagoear
speed COSQ({) J S\nzl.i) € nyolcnﬂ}il-y

\

\l W




9.6 - SOLVING MOTION PROBLEMS USING
PARAMETRIC AND VECTOR-VALUED FUNCTIONS

At time t = 0, a particle moving 1n the xy-plane
has velocity vector given by v(t) = (t°, 4t).
What 1s the acceleration vector when t = 27

ach)= d (D)= (& (+*), 4 (1)

- (%\' ) v
al2)=C3(1),4 = (13 Y)




9.7 - DEFINING POLAR COORDINATES
AND DIFFERENTIATING IN POLAR FORM

(x,y) is for a rectangular coordinate system.

(7, 0) is for a polar coordinate system.

r 1s a directed distance from the origin to a point P.

0 is the directed angle

CONVERTING BETWEEN o
RECTANGULAR AND POLAR  °
COORDINATES
* Polar coordinates to
rectangular
coordinates i 8 o o)
X=rcos#; y=rsinb
T Y ~
« Rectangular 4 >
coordinates to polar *
coordinates .
Y (

FT=XxT+yTl tanf ==
X




9.7 - DEFINING POLAR COORDINATES
AND DIFFERENTIATING IN POLAR FORM

Let 7 be the polar function 7‘(9) = COS(BQ) + 4. Here is
its graph for 0 < @ < 27r:

Sin ce X=Y¥CcOd 9,

- r zcos (8§ moltiply bO}:;
; rcos0: ('05(89}059 ' C Sides by €©

A =Conl80)os0 oS 5
] ohx = '8531\ (89)(059 'CO.S(SQ)S'\D(G) Msin0
—— a"
0 (0) codD) ~cos0ksin0)- ~sin(d)

567 dx =
\ el
) Poind Poccd's a¥ @:0 or 6=2m (since O« 6 211

_7:; r(m:(os(())’l-q :5 pOlh* p: (SJO)W
r(2w) = cosQmrN=5 (5,27)

What is the rate of change of the z-coordinate with

respect to @ at the point P?




9.7 - DEFINING POLAR COORDINATES
AND DIFFERENTIATING IN POLAR FORM

Since X=ys® rcosO=cos*0

Consider the polar curve r = cos(0). N= Tﬂn@, rsin@ =cos@sn @
- - - ces*0
What is the slope of the tangent line to the curve r A= t
when 0 = Z? \12(06951"9
Give an exact expression. “
%ég:ficow&n 0
%‘ - Oalie _(o8'G-sin’0
™~ - eind
¥ dx ~2coshsin@ %%_ - o8 G - sin*@
dé

d i) - (%)
ajflg;%-:(} z) _@

2(5)(%)



9.8 - AREA BOUNDED BY A
SINGLE POLAR CURVE

This is the formula for the area enclosed by a polar curve 7(6)
between @ = o and 60 = (3:

F 1 )
fa - (r(6))*d0

Be careful finding the interval of

integration!




9.8 - AREA BOUNDED BY A
SINGLE POLAR CURVE

The polar curve r(8) = 0 - sin(280) is graphed for
0<o< .

Let R be the region in the fourth quadrant enclosed by

the curve and the z-axis.

To bind our povnds, we se¥ r=0
i 0= 95\1\(19)
1 0‘:9 0:9‘@'9)) -
% =2 | sohing g equaton

for on inlegor n

2
@ s0 our Ovalwes between 0 <0 e
)
are e_,o‘_."%‘-rr

For volves belween Z and m r is negative
0 itis In Quodront TE even it the qnsle isn Quodront IT

So, ouf *=L and b=

Which integral represents the area of R?

oy (b
Area = 3 S, r’dé = -%_E(Usmcwﬁldg
2

IS
I

©

w

w

T “!i Sﬂw”'sm’(w)) dé

]



9.9 AREA BOUNDED BY TWO POLAR
CURVES

Continue using the area formula to
subtract big area - small area

Watch out for points of intersection (you |

can get them by setting both polar
equations equal to each other) and

symmetry




9.9 AREA BOUNDED BY TWO POLAR
CURVES

Area Bounded by Two Polar Curue

1

B
1=5 @?as =" (mz

1 (P
A:—f[ﬁ-—nﬁw
2{]'.




9.9 AREA BOUNDED BY TWO POLAR
CURVES

Let R be the region that is inside the polar curve
r = 3sin(f) and outside the polar curve r = 1 + sin(8),

™
as shown in the graph. The curves intersect at @ = — and _

6
o _ 4
T e 3l en)do

y f

(09
R “ded pe\oWw Y
& bdf,:\*s‘n(erl)f&}
1 < (sm\\ o
v% N v







Don’t give up, you're almost there :)

Check out

loopsotkindness.com/loopsotflearning for

more content




